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This paper is a contribution to the mathematical analysis of the stability of 
steady axisymmetric parallel flows of uniform fluid in the absence of rigid 
boundaries. A jet at sufficiently high Reynolds number for the angle of viscous 
spreading to be small is the typical example of the primary flows considered, and 
the theoretical velocity profile far downstream in such a jet is kept in mind con- 
tinually. It is obvious from experience that such jets are unstable, presumably to 
infinitesimal disturbances, but there is little observational data about the 
critical Reynolds number or the mode of disturbance that grows most rapidly 
at a given Reynolds number. 

The typical small disturbance considered is a Fourier component with sinu- 
soidal dependence on both ax and n# (x, r ,  # are cylindrical polar co-ordinates). 
There is no analogue of Squire’s theorem for two-dimensional primary flows, and 
both a and n are essential parameters of the disturbance. We have concentrated 
on the stability characteristics in the limit of large Reynolds number, and have 
aimed in particular at determining the (integral) value of n at which the growth 
rate is a maximum in these simpler circumstances. 

A number of general results for inviscid fluid are established, many of them 
analogues of corresponding results for two-dimensional primary flow. A necessary 
condition for the existence of amplified disturbances is that 

&(r )  = rU’/(n2 + a2rz) 

should have a numerical maximum a t  some point in the fluid; this condition is 
satisfied for all n in the case of a cylindrical shear layer or ‘ top-hat ’ jet profile 
(for which a complete solution of the disturbance equation can be obtained), 
and for n > 1 in the case of a ‘far-downstream’ jet profile. The wave speed c, 
of a neutral disturbance is equal to the value of U either a t  the point where 
d&/dr = 0 or a t  r = 0. In  the latter case the eigen-function (if one exists) is 
singular at the axis in general; the former case is presumably relevant to the 
‘upper branch’ of the curve of neutral stability (for given n). The Reynolds stress 
due to the disturbance acting across a cylindrical surface is examined. Here, 
as in some other contexts, it  is useful to consider components of velocity parallel 
and perpendicular to a circular helix on which the phase of the disturbance wave 
is constant. For a neutral disturbance the component of disturbance velocity 
parallel to the local wave helix is infinite a t  the critical point where U = c, 
(corresponding to the known singularity for a three-dimensional disturbance to 
two-dimensional flow), and there is a peak in the Reynolds stress there. 

It is shown from the form of the disturbance equation that there is an upper 
limit to the value of n ( =+ 0) for a neutral (inviscid) disturbance with c, equal to 
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the value of U a t  the point where Q’ = 0. In  the case of a jet with a ‘far-down- 
stream’ profile, only the value n = 1 satisfies this restriction; thus only the 
sinuous mode n = 1 can yield amplified disturbances in an inviscid fluid. A 
numerical investigation shows that for this profile the wave-number of the neutral 
disturbance with n = 1 is a = 1.46. 
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1. Introduction 
We are concerned in this paper with the stability of steady unbounded axi- 

symmetric flows of the wake-jet type, without azimuthal swirl and with nearly 
parallel streamlines. The fluid is uniform throughout; that is, the jets are ‘sub- 
merged’. Flows of this kind may be produced readily in a laboratory, and occur 
in many branches of engineering. Nevertheless, very little is known about their 
stability, apart from the simple fact that wakes and jets can be observed in both 
laminar and turbulent form and are evidently unstable under certain con- 
ditions. Two-dimensional flows have been given most of the attention in stability 
theory, and the limited amount of work on axisymmetric flows has been confined 
almost wholly to the effect of axisymmetric disturbances. The classical axi- 
symmetric case of Poiseuille flow in a circular tube still awaits a solution despite 
having been virtually the first problem of hydrodynamic stability to be posed. 

Steady axisymmetric wakes and jets change in width with distance down- 
stream under the influence of viscosity. Far enough downstream from the source, 
the axial component of velocity (relative to that far from the axis of symmetry) 
takes an asymptotic form 

% - p f ( r / X * ) ,  
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where x, r ,  4 are cylindrical co-ordinates. The values of p and q required for com- 
patibility of this form with the boundary-layer forms of the equations of motion 
and continuity are as follows: 

P Q 4-P 
Jet 1 1 0 

.,Wake 1 4 -4  
The local Reynolds number formed from the width and maximum relative 
velocity varies as xq-p; it is constant for a jet, as is evident directly from the 
requirement of constancy of the flux of axial momentum across planes normal to 
the axis, and decreases downstream for a wake. (In two dimensions the local 
Reynolds number for a jet increases as x) and is constant for a wake.) A steady 
wake is therefore certain to be stable far enough downstream, and likely to be 
most unstable, if anywhere, in the neighbourhood of the source of the wake where 
the profile is not yet in its asymptotic form. This fact limits the value of theo- 
retical analysis for wakes, and in the remainder of the paper we shall refer only 
to jets. 

The exact solution of the Navier-Stokes equation for the stream function 
Y representing a steady jet due to a force applied at’a point in an unbounded 
fluid (see Landau & Lifschitz 1959, p. 86) is 

2ur sin 8 
sec 8, - cos 6’ Y =  

where 8 ( =  tan-lr/x) is the spherical polar angle with origin at  the point of 
application of the force and 8 = 0 in the direction of the force. The constant 80 
is the value of 8 at which the streamlines are at their minimum distance from the 
axis of symmetry and is thus a measure of the angular width of the jet. 
uniquely related to the force M applied to the fluid by 

32cos8, 4 1-cos8, 8 -- 
277pv2 3 sin2 8, -I- log (1 + cos 8,) -I- Cose, ’ 

which reduces to 

for large values of M and small values of 8,. In  these latter circumstances, 
approximately equal to the flux of momentum across any plane normal to the 
axis and the stream function (1.1) becomes 

4vxr2 
YfW- 

r2 -I- r i  

for 8 < So< 1, where ro = z tan 8, is the semi-width of the jet at distance x from 
the source. The axial component of velocity corresponding to (1.4) is 
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where U, is the maximum value of U on the plane x = const. The relation ( I  .5) 
is familiar as the solution of the boundary-layer form of the governing equations. 
The Reynolds number of the jet formed from the semi-width ro and the maximum 

I n  the case of an experimental jet produced by the discharge of fluid from an 
orifice, evaluation of the corresponding value of M requires a knowledge of the 
distribution of velocity across the orifice. It is likely that only the volume flux 
Q and the orifice area A will be known with any precision, and it is therefore 
worth noting the following two limiting cases: 

(a )  for uniform velocity a t  the orifice 

( b )  for a parabolic distribution of velocity a t  a circular orifice, 

It is a matter of convenience in this latter case that R is identical with the 
Reynolds number formed from the diameter of the orifice (4A/n)* and the mean 
velocity &/A at the orifice. 

All these formulae from (1.2) onwards, and the equating of M to the flux of 
momentum across a plane normal to the axis, are accurate only when 6,, -g 1, or, 
equivalently, when R/8 B 1. In the subsequent stability analysis we shall be 
obliged to make the conventional assumption that the flow is locally unidirec- 
tional. For this to be valid it is necessary that the quantities ro and U, in (1.5) 
remain nearly constant over one wavelength of the disturbance. Now 

82 
ro = xtan8, w R ,  (1.9) 

and 
8vx vR2 

(J - N ~ 

N 

O - f-8 8x’  
(1.10) 

so that both quantities are approximately constant over a wavelength if ax & 1, 
where a is the wave-number of the disturbance. This latter condition can also 
be written as &r,R & 1. (1.11) 

Surprising though it may be, there appears not to be any published data 
concerning the critical Reynolds number a t  which an axisymmetric jet becomes 
unstable. The only observations known to us are two of a preliminary nature not 
yet in print. In  1958, H. Schade at Cambridge observed that steady liquid-into- 
liquid jets with Reynolds numbers of several hundreds could be obtained, 
although no definite critical Reynolds number was found.? In  1960, A. Viilu a t  
Massachusetts Institute of Technology observed that a liquid-into-liquid jet 

t These observations were undertaken as a part of a general, and primarily theoretical, 
investigation by Schade of the stability of axisymmetric flows, partly at Cambridge and 
partly at Berlin. The mathematical work, which has some points in common with the 
present paper, is described in a thesis submitted in 1960 for a doctoral degree at  Tech-he 
Universitat, Berlin. 
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became unsteady at a Reynolds number of about 1 l . t  The marked difference 
between these two sets of data led Dr A. J. Reynolds to undertake the experi- 
ments described in the accompanying paper (Reynolds 1962). These experiments 
make it clear that there is scope for the use of the assumption, so convenient in 
stability analysis, that the Reynolds number of the flow is large and the flow is 
unidirectional. They also show that small-disturbance theory is unlikely to be 
able to account completely for the behaviour of a real jet. 

2. Equations for a small disturbance to a unidirectional jet 
We suppose here that a steady jet with velocity U, having components 

U(r ) ,  0, 0 relative to cylindrical co-ordinates x,  r,  #, is subjected to a small dis- 
turbance. The velocity perturbation is u, with components ux, u,, uc. Then, to 
the first order in IuI, the equation of motion gives 

au au du 1 -+ u-+v- = --vp+vv2u, 
at ax dr p 

where p is the pressure perturbation, From the equation of continuity we have 

aux 1 a(ru,) 1 au, - 
ax r ar r a# v.u = -+-- +--- . (2.2) 

Without restricting the form of the disturbance we may resolve it into Fourier 
components with respect to the azimuthal angle $; for a typical component, 
whose behaviour is independent of that of other components, 

u,, u,, uc cc ein+. 
It is also possible to make a Fourier resolution with respect to x for a disturbance 
of finite total energy. Finally, we look for a normal-mode type of disturbance 
which retains the same form while its magnitude varies exponentially in t .  The 
type of disturbance to be considered is then 

7 (2.3) 
ux, u,, uc = 9[{P(r) ,  iG(r), H(r,))einc+ia(z-@ 

p / p  = &?[P(r) e f n + + i a Q d ] ,  

where a is a wave-number and the imaginary part of the complex velocity 
c = c, + ici determines the stability of the jet to this particular disturbance. We 
have put u, oc iG because (2.2) shows that the phase of v differs by &r from that 
of u and w. 

On substituting (2.3) in (2.1) and (2.2) we obtain the following four scalar 
equations for the four unknown functions P, G, H ,  P :  

o!(U-C)F+U'G=-CLP-~V (2.4) 

a ( U - c ) Q  = PI-iv (2.5) 

n2+ 1 ( ra ) $ ) (2.6) 
n 
r 

~ ( U - C ) H  = - -P-iv  a2+- H--G , 

I n  
r r .  

a F + G ' + - G + - @  = 0 (2.7) 

t [Note added in proof.] An account of this work has now been published (Viilu 1962). 
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in which a prime denotes differentiation with respect to r .  Equations containing 
only one of the unknown functions can be derived with no more than algebraic 
difficulty, but will not be needed here. 

The boundary conditions (not necessarily independent) to be satisfied at the 
outer boundary are simply 

F,G,H,P+O as r+m. (2.8) 

At the inner boundary, r = 0, the conditions to be satisfied are kinematic in 
origin. From the nature of the co-ordinate system both u, and p must be in- 
dependent of $ when r = 0, which requires, for n + 0, 

(2.9) 

The character of the co-ordinate system also requires both ur and u+ to vary as 
sin $ in the neighbourhood of r = 0, which is compatible with (2.3) and non-zero 
values of G(0) and H ( 0 )  only if n = l.,Thus if n + 1 we must have 

(2.10) 

while if n = 1, non-zero values of F ( 0 )  and H ( 0 )  are possible and, in view of the 
form of the continuity relation (2.7), 

P(0) = P(0) = 0. 

G(0) = H(O) = 0; 

G(0) = -H(O). (2.11) 

None of the above boundary conditions arises directly from the effect of viscosity, 
and are formally the same in an inviscid fluid. 

Analysis of the stability of steady unidirectional flow in two dimensions has 
suggested that the net effect of viscosity is there such as to decrease the energy 
of a disturbance, except when the Reynolds number lies within certain ranges in 
cases of ff ow in the presence of a rigid boundary. In the absence of a rigid boundary, 
a disturbance of given wave-number to a given two-dimensional flow seems to 
have its greatest (non-dimensional) rate of growth a t  infinite Reynolds number, 
if instability to this type of disturbance exists a t  all; a given disturbance is then 
unstable a t  (not too small) finite Reynolds numbers only if it  is unstable a t  in- 
finite Reynolds number, although of course the effect of viscosity is relevant to 
the value of the Reynolds number below which no disturbances are amplified. 
The complexity of the equations (2.4) to (2.7) forces us to consider the stability 
of axisymmetric flows of inviscid fluid, in the first instance at  any rate, and 
experience with two-dimensional flows encourages the belief that in the absence 
of a rigid boundary the results obtained allow firm deductions about whether 
a given disturbance is unstable at some finite Reynolds numbers. 

The single governing equation for inviscid JEuid 

The governing equations (2.4) to (2.7) become, when v = 0, and after elimination 
of the pressure function P, 

d 
~ ( U - C ) G + - { ( U - C ) T H }  = 0,  

dT 

a(U-c )  (nF-arH)+nU’G = 0, 

arF+rG’+G+nH = 0. 

(2.12) 

(2.13) 

(2.14) 
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The first two of these equations are in effect equations for the x- and r-components 
of the disturbance vorticity respectively. Elimination of F between equations 
(2.13) and (2.14) gives 

n( U - c )  (rG' + G )  - nr U'G + (n2+ a2r2) ( U  - c )  H = 0, (2.15) 

and then, on eliminating H between (2.12) and (2.15), we have the following 
equation in G alone: 

The form of the solution near r = 0 may be seen immediately. For when n 9 0, 
the leading terms in (2.16) give 

1 (rd9) -n2G = 0,  

provided either ci =!= 0 or U' + 0 a t  the point where U = c,. This equation has 
solutions of the form rn-l and r-n-1, so that the boundary condition at r = 0 
and the differential equation are both satisfied by 

G(r)  N r*-l (2.17) 

near r = 0. I n  the case n = 0, the approximate form of (2.16) near r = 0 is 

and the first terms of a series which satisfies this equation and the boundary 

(2.18) 
condition (2.10) are 

G(r)  = C(r+&a2r3), 
where C is a constant. 

Note on the use of the inviscid equation 

As in the case of a primary flow which varies with respect to one lateral position 
co-ordinate, there is a singularity in the solution of the inviscid equation (2.16) 
at the critical point, r = r, a t  which U = c. If c is complex, then r, is a point in 
the complex r-plane. In  a fluid of small viscosity, this point is replaced by a 
critical layer Ir - r,l < 8 whose thickness 6 vanishes with the viscosity. For rc 
real and non-zero, the critical layer is a thin cylindrical annulus in the fluid, and 
since the layer is thin, the local behaviour of the solution will be the same as in 
the case of a two-dimensional primary flow (as already remarked by Pretsch 
(1941) for the particular case of axisymmetric disturbances). For complex r, 
the local behaviour is also the same as for two-dimensional primary flow. This 
means that, provided r, =# 0, the effect of friction in the critical layer of an axi- 
symmetric jet can be obtained from known results for disturbances to a two- 
dimensional primary flow (for an account of which, see Tollmien 1929 and Lin 
1955, chapter 8). 

It is known that, as far as amplified disturbances are concerned, the effect 
of friction is negligible in the limit of vanishing viscosity, and that neutral dis- 
turbances also satisfy the inviscid equation, provided that when the logarithmic 
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singularity appears a t  the critical point, the same branch of the logarithm is 
taken as for the slightly amplified case. For damped disturbances, the branch 
of the logarithm which must be taken corresponds to integrating (3.16) along 
a path in the complex r-plane which passes the critical point on the side opposite 
to the real axis (Lin 1955, pp. 125-6 and diagram p. 132). Consequently, only 
amplified and (if proper care is taken at the critical point) neutral solutions can 
be obtained by straight-forward integration of (2.16) along the real axis; for 
damped solutions, friction must be taken into account in certain regions (shown 
in Lin's diagram, p. 132) however small Y may be. The above remarks are of 
course subject to the proviso that rc + 0, and the possibility of rc being zero 
must be considered separately. 

3. The complete solution for a cylindrical vortex sheet in inviscid fluid 
For one particular jet-like profile it happens that the disturbance equations 

for an inviscid fluid can be solved completely. This profile is such that 

U = U, for r < a 
and U = 0 for r > a, 

and provides an approximate representation of the velocity distribution in a 
jet at positions close to a circular orifice through which fluid is emerging with 
uniform speed at high Reynolds number, as in an 'open-jet' wind tunnel. As 
well as having some direct interest, the results for this profile are useful as a 
means of testing the general theorems to be established later. 

The feature of this case that makes it tractable is, of course, the irrotationality 
of the primary flow everywhere except on the cylinder r = a. Growing oscilla- 
tions must likewise be irrotational except at the (displaced) vortex sheet, and 
it is more convenient to use this fact directly than to proceed via the governing 
equation (2.16). We suppose that the radial displacement of the vortex sheet 
due to the disturbance is ~ ( z ,  4, t ) ,  of which a normal mode is 

(3.1) = A eing5+ia(z-cD 

where A is a constant. The corresponding velocity potentials of the disturbance 
motion are 

$0 = ' o ( ~ ) ]  ein++ia(r-ct) for r ;a+T,  
91 = @ l W  

where CD, and 0, satisfy the modified Bessel equat,ion 

The general solution is of the form 

@ ( r )  = CI,(ar) +DK,(ar), (3.3) 
where I, and K ,  stand, as usual, for the modified Bessel functions of the first and 
second kinds. For no value of n does I,(ar) -+ 0 as r + 00; and for no value of 
n do K ,  and KA vanish at  r = 0 (nor, in the case n = 1, does KA + iK, vanish 
there). The boundary conditions (2.8), (2.9), (2.10) and (2.11) therefore require 
the solutions 

(3.4) 
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This form for @,,(r) has a behaviour near the axis r = 0 which is consistent with 
the general relation (2.17) or, for n = 0, (2.18). 

We now apply matching conditions a t  the common boundary of the two regions 
of irrotational motion. The kinematical condition that the boundary is a material 
surface gives 

”+U”=($J) and ”=(%) at r=a , 

that is, 
at ax  r-a 

ia(Uo-c) A = aCIA(aa) and -iacA = aDKA(aa). (3.5) 

__L 

4 

FIGVRE 1. Wave speed c, (solid lines) and amplification factor ci (broken lines) 
for a disturbance to a cylindrical vortex sheet. 

The dynamical condition that the pressure is continuous across the boundary 
gives 

that is, (U, - c )  Cl,(aa) = - cDK,(aa). (3.6) 

Elimination of the constants A, C and D from the three relations (3.5) and (3.6) 
then gives, as the condition for a non-zero solution, 

= -L,(aa) say, (3 .7)  
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where L,(aa) 2 0 for all n and aa. The wave speed and amplification factor for 
a growing disturbance are then 

The values of c,/Uo and ci/ U, as functions of aa for various values of n are shown 
in figure 1. The flow is unstable to a small disturbance for all values of n and aa. 
As aa --f co, L,(aa) -+ 1 for all n, and the results appropriate to a disturbance to 
a plane vortex sheet in two dimensions are recovered, as would be expected. 
At the other extreme aa -+ 0, corresponding to slow variation of the disturbance 
in the flow direction, we have L,(aa) -+ 1, for n =+ 0 and L,(aa) -+ 0. Thus long 
waves with axial symmetry travel with the speed of the centre of the jet, whereas 
all those not having axial symmetry travel with half that speed, The disturbance 
whose amplitude is increased by the largest multiplicative factor in a given time, 
with given values of U, and a, is the one for which aci is a maximum. This maxi- 
mum occurs at the limit a -+ m, and is independent of n. However, it  is to be 
expected that when the transition from the uniform velocity U, in the core of 
a jet to zero velocity outside the jet takes place in a layer of non-zero thickness, 
d say, disturbances for which 2nIa < d are stable, just as in the case of a plane 
shearing layer. Provided d < a, the behaviour of disturbances to the cylindrical 
vortex layer for which ad is of order unity is approximately the same as for a 
plane layer, and we may expect that the maximum growth rate occurs when a 
is of order l/d. 

4. General results for a unidirectional jet in inviscid fluid 
Equation (2.16) for a disturbance to a unidirectional axisymmetric jet in 

inviscid fluid bears some resemblance to the equation for the stream function 
representing a (three-dimensional) disturbance to a plane unidirectional flow 
(and the latter equation may be recovered from (2.16) by putting r = r1 + y, and 
letting rl tend to infinity while n/rl remains fixed), which suggests that it may be 
possible to find analogues of some of the well-known results for two-dimensional 
flow of inviscid fluid. This section describes a number of such analogous results. 

A necessary condition for instability 

A necessary condition for the existence of amplified disturbances can be obtained 
by dividing (2.16) by ( 7 7 - c ) ,  multiplying by the complex conjugate of rG, and 
subtracting the complex conjugate of the whole equation, to give 

The integral of the left-hand side over the range r = 0 to r = co (or over any 
range such that rG = 0 at the two end points) is zero, and the consequence for 
the right-hand side is that 

c,sUm Igl2Qfcir = 0, (4.2) 

where 
r rU' 

u-c n2 + a2r2 ' 
g(r) = - -G(r)  and &(r) = ___ (4.3) 
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Thus the quantity Q' must change sign at an interior point if amplified dis- 
turbances of the form (2.3) with ci + 0 are to be possible. The parallel with the 
corresponding result for unidirectional flow in two dimensions is made plainer 
if we say that, for amplified disturbances to exist, U must have a point of in- 
flexion with respect to the variable 

n2 + a2r2 
dr = n210g r + +a2r2. (4.4) 

The equation (2.16) and the necessary condition for instability that Q' changes 
sign were obtained by Rayleigh (1892). He pointed out that the velocity dis- 
tribution in an exactly steady and unidirectional flow inside a rigid circular 
cylinder is of the form U = A+Br2+-Clogr, 

with C = 0 unless a second concentric cylinder is present as an inner boundary 
to the fluid, and that the function 

2Br2 + C 
n2 + a2r2 

Q(r)  = 

varies monotonically with r .  Thus amplified inviscid disturbances are not possible 
in this case. The particular case of an axisymmetric disturbance (n = 0) to 
Poiseuille flow in a circular tube (C = 0) is exceptional, in that Q' is then zero 
everywhere in the fluid, corresponding to a state of neutral stability like the 
two-dimensional case of plane Couette flow. 

The implications of the above necessary condition for instability as applied 
to jets are especially illuminating. Near the centre of a jet we may put 

and, at the other end of the r-range, Q --f 0 from below as r --f co. There is evi- 
dently an important difference between the cases n = 0 and n += 0. For n + 0, 
Q = 0 at r = 0 and a t  r = 00, so that there is certain to be a place in the fluid 
where Q' = 0, irrespective of the exact form of the velocity profile; the necessary 
condition for instability is satisfied. For n = 0, on the other hand, Q = U p / &  
and Q' may not change sign. For any slowly varying profile roughly like a Gaus- 
sian function, or for the profile (1.5) appropriate far downstream from a steady 
point-force, Q now increases monotonically from r = 0 (where Q = -2Pla2) to 
r = co, so that unstable oscillations are excluded; but for a profile which has a 
steeper gradient a t  some finite r than that for the parabola which fits the profile 
near r = 0 (so that IU'I > 2pr at some r )  Q does have a turning-point and 
unstable oscillations are not excluded (see figure 2). A ' top-hat ' profile for which 
U is approximately constant in some central region and then falls rapidly to zero 
satisfies the necessary condition for instability to axisymmetric disturbances, 
and the instability has been found explicitly in $3.  Ring-shaped vortices a t  the 
boundary of the core are in fact a common feature of jets a t  positions close to an 
orifice at which the velocity is nearly uniform (Wehrmann & Wille 1958). 

So far as profiles varying slowly with r are concerned, it seems that we must 
look to non-axisymmetric disturbances for an explanation of the observed 
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instability of jets. It is shown later that a t  sufficiently large values of n axi- 
symmetric jets are stable, and that for the partieixla,r profile (1.5) only sinuous 
modes, for which n = 1, are amplified. 

FIGURE 2. Jet  profiles; (a) typical slowly varying prof%, (a) 'top-hat' type of profile. 

ReJinement of the necessary condition 

Fjartoft (1950) and Hoiland (1953) have shown that the necessary condition for 
instability of unidirectional inviscid flow in two dimensions, viz. that U" changes 
sign somewhere in the fluid, can be made more specific and that, for profiles of 
moderately simple form, I U'I must have a maximum. A similar refinement of 
the above necessary condition for instability of an axisymmetric jet can be made. 
Instead of subtracting in the last step leading to (4.1), we now add, and obtain 

Integration over the whole range of r then shows that 

(4.6) 

When ci + 0, the integral in (4.2) is zero and we can replace c, in (4.6) by any 
other constant factor, a convenient choice of which is the value of U at the point 
Y = rt where &' = 0, to be denoted by C$; hence 
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Now both U -  V ,  and Q‘ change sign together at r = r f ,  in a case in which 
amplified disturbances are not excluded, and (4.7) shows that, in the case of 
profiles of such simple form that &’ changes sign only once, U - U, and Q’ must 
have opposite signs. In  other words, the point of inflexion that U must have with 
respect to the variable p defined in (4.4) must be one for which IdUldpI is a 
maximum with respect to p. In  any monotonic jet profile, U’ -+ 0 from below, 
as r + m, so that in the outer region of a jet Q’ > 0; thus if Q’ changes sign a t  all, 
it  will do so in the manner required by (4.7). 

Restrictions on c, and ci 
The kind of juggling with the governing equation (2.16) that led to the relations 
(4.2) and (4.7) also yields integral relations which place restrictions on the wave 
speed c, and the amplification factor ci. We begin by noticing that (2.16) can be 
written in the form 

On multiplying by and integrating with respect to r ,  we find 

IOrn ( U - c ) 2 a d r  = 0, (4.9) 

where 

is a positive real function. The relation (4.9) cannot be satisfied if c is real and 
outside the range of U. (And if c is real and inside the range of U ,  the derivation 
of (4.9) fails because by (4.8) g and hence @ may have a singularity at the point 
where U = c.) If ci > 0, the imaginary and real parts of (4.9) yield, following 
Howard (1961), 

(4.10) 

by (4.10). Suppose now that a < U ( r )  6 b. Then from (4.10) and (4.11) we have 

m 

0 
= ( [c ,  - &(a + b)I2 + c4 - $(a - b)2} / Qdr, 

i.e. { ~ , - $ ( a + b ) } ~ + c ~  < {i(a-b)}2. (4.12) 

Thus the complex wave velocity must lie within the semi-circle which has the 
range of U for diameter, exactly as for two-dimensional primary flows. 
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Components parallel and perpendicular to helices of constant phase 

In considering a three-dimensional disturbance to a two-dimensional unidirec- 
tional primary flow, as in a proof of Squire’s theorem, it is instructive to work in 
terms of components of the velocity parallel and perpendicular to the lines of 
intersection of the planes 

ax+ yz = const., y = const., 

on which the phase of the disturbance wave is constant. An analogous procedure 
is useful here for several different purposes. For a disturbance of the form (2.3) 
to an axisymmetric jet, the lines of intersections of the surfaces 

ax+n$ = const., r = const., 

are circular helices on which the phase of the disturbance wave is constant. 
All these ‘wave helices’ advance an axial distance 2nn/cc in one complete turn, 
and the tangent to a helix at any point makes an angle tan-l(ar/n) with the 
direction of the axis. The components, in a cylindrical co-ordinate system, of 
the velocities of both the primary flow and the disturbance depend only on the 
variables r and 6 (for given a and n), where 

u6 = ax+n$, (4.13) 

and are constant on a helix of the above family. Consequently a material line 
defined at  any instant by the relations 6 = const., r = const., continues to be 
a helix of constant phase, just as a material straight line of constant phase 
remains a straight line of constant phase in the case of two-dimensional primary 
flow. 

The required new orthogonal components of the disturbance velocity u are 

I nu4 uuz perpendicular to both the radial line and 
u --++, 

rk k the helix of constant phase, 

u2 = u,, radial, 

au nu, parallel to the tangent to the local helix 
u --$--...- 
- k rk ’ of constant phase, 

where k: = (~2+n2r-~)* plays the part of a total wave-number magnitude. 
Now for a disturbance velocity which is a function of r and E alone, like the form 
(2.3), we may replace a/ax by 8/86 and a/8$ by (n/a) 8/86, so that the continuity 
equation (2.2) can be written as 

a%, 1 a(ru2) = 0. 
i i z+rar  

This can be satisfied identically by introducing a stream function given by 

(4.15) 

it is possible to show by the usual methods that 2 ~ ( @ ~  - $.,) is equal to the flux 
of fluid volume across the surface generated by one turn of the wave helices 
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passing through any curve joining the two points A and B, and that $is constant 
on any one helix. The component u3 parallel to the tangent to the local helix is 
analogous to the azimuthal component in a rotationally symmetric system. 

Thus the disturbance is specified completely by the two scalar functions 9 
and u3, both of which are proportional to eiac. The relation between $, us and the 
functions P, G, H used earlier is evident from (2.3), (4.14) and (4.15): 

(4.16) 

The governing dynamical equation can be written with @ as the dependent 
variable in place of G, and in addition we have from (2.13) 

$> 
h n U‘ u3=--- 

kr2 U - c  
(4.17) 

where Q3 represents the function of r such that 

t ,  u3 = g{Q3 eW+ia(x- -c t )  

and likewise for $. Equation (4.17) expresses the fact that the line integral of 
the total velocity (primary flow plus disturbance) round one turn of a material 
wave helix remains constant. Q3 is known as soon as the eigen-function equation 
for G or $ has been solved, and plays a passive part similar to that of the com- 
ponent of disturbance velocity parallel to  the straight lines of constant phase in 
the corresponding problem of three-dimensional disturbances to a two-dimen- 
sional primary flow. 

5. Properties of a neutral disturbance in inviscid fluid 
The wave speed for neutral disturbances 

The question of whether neutral disturbances exist has not yet been discussed, 
but if such disturbances are possible, we can show that the wave speed must 
have one of two values, by making use of (4.1). This equation may be written 

where {r&(rG)’ - rG(re)’}  
i r  W = -  

n2 + a2r2 

and Q is defined by (4.3). We shall show later that W is related to a component 
of the Reynolds stress. 

When ci becomes small, (5.1) shows that the derivative of W also becomes small, 
except for a narrow peak near the point r = rc, where U = c,.. So W itself will 
tend to a constant value on either side of r = rc, but will have a jump at  this 

r2 [GI2&‘& 
2ci 

ciJ.0 s 0 (u-c,.)2+c: 

point given by 
[ W ]  = - lim 

,.=re 
(5.3) 
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provided UL + 0. Now W must be zero both a t  r = 0 and r = co in order to satisfy 
the boundary conditions, so for a monotonic profile the jump must be zero. If 
re + 0 (so that U; $: 0) this requires that Q’ = 0 a t  r = r,, i.e. rc = r f ,  c, = U,. 
One would expect that the alternative G = 0 is not possible, and this can be 
verified, for example, by integrating (4.8) to obtain 

(5.4) 

and by noticing that if g is positive for large values of r ,  g increases as r decreases. 
Near r = re (4.8) shows that g behaves like ( r  - rc)-l or 1, but only the former case 
is consistent with (5.4). Therefore G = ( U  - c) g/r tends to a non-zero value as 

3. rc. 
We have shown, then, that for neutral solutions which are the limit of amplified 

solutions, c = U,, or possibly c = U,. 
Before looking into the latter possibility in more detail, it must be noted that 

the above deduction relies on being able to take the limit of amplified solutions, 
whereas these do not exist if Q’ does not change sign within the fluid. At the same 
time, it would be surprising if (5.3) could not be deduced directly from theanalysis 
for a neutral solution, and we will now demonstrate that (5.3) is valid for any 
neutral inviscid solution that is the limit of a viscous solution as the viscosity 
vanishes. 

The examination of the solutions of (2.16) near the singularity r = re (re + 0 )  
shows that they are given by 

rG, = ( r  - r,) Pl(r - T,), (5.5) 

(5.6) 9472 = Po(r - r,) + (Q’/Q)r=rc (r - rc) log ( r  - rc) Pi(r - rc)? 

where Po, P, are power series with Po(0) = Pl(0) = 1. The general solution is of 
the form 

rG = ArG, + BrC,. 

G, is a multiple-valued function because of the logarithmic singularity, and this 
leads to the by now familiar problem of deciding which branch corresponds to 
the limit of a viscous solution. Tollmien (1929) solved this problem (which is 
discussed in detail by Lin 1955, chap. 8)), and concluded that the correct branch 
corresponds to a path in the complex plane above r = r, (for U; < 0). A little 
algebraic manipulation then reproduces (5.3), again under the restriction r, =k 0, 
so that our previous result is strengthened to ‘ any neutral disturbance has wave 
speed given by c = t$ or c = Uo’. 

Neutral disturbances with wave speed Uo 

We can show that if neutral solutions with wave speed Uo do exist, then they are 
singular in the sense that the values required by the boundary conditions at  
r = 0 are not approached as r + 0. This may be possible because there is a sin- 
gularity at r = 0, but to go into the question of existence fully the effect of 
viscosity near r = 0 must be taken into consideration. 
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The proof that the only solutions are singular ones is another application of 
(5.4). If g is positive for large values of r,  (5.4) shows that gincreases as r decreases. 
Near r = 0,  (4.8) shows that if r, = 0,  g behaves like 

r-2-l/(n2+4) or r-2+v/(B2+4) if n -I,= 0, 

or like r2 or 1 if n = 0,  

but only the former alternative in each case is consistent with (5.4). 
There is, however, one special case where the solution is non-singular, viz. 

when the total wave-number vanishes, i.e. n = 0,  a = 0. In  this case the right- 
hand side of (5.4) vanishes, giving g‘ = 0 and 

rG = Uo- U(r ) ,  (5.7) 

which does not appear to satisfy the boundary condition at  infinity. The reason 
for this can be seen by noting the form taken by the governing equation (2.16) as 
a -+ 0. (5.7) is a valid solution provided ar is small. For ar not small, (3.16) can 

d d(arG) 
be approximated by 

d(ar) -(-I ardfar) = G, 

of which the solution matching (5.7) for r large is 

rG = UoarK,(ar), 

where K ,  is the modified Bessel function. Thus a uniformly valid approximation 

(5.8) 
would be, for instance, 

rG = ?&arK,(ar) - U(r ) ,  

and this solution does satisfy the boundary condition. If the results for a cylin- 
drical vortex sheet (4 3) for large a are put in terms of rG, they take the form 

0 

UoarK,(ar) ( r  > a) ;  

(0  < r < a) ,  
r G = {  

thus (5.8) is a uniformly valid approximation even for this discontinuous profile. 

The energy equation and the Reynolds stress 
The energy equation, averaged over x and 4, says that the rate of gain of energy 
of a cylindrical shell of fluid between r = ro and r = ro + 6r is equal to the flux of 
energy into the shell across the two cylindrical surfaces. The equation may be 
re-interpreted in the usual manner as a gain of energy under the action of pressure 
forces and Reynolds stresses on the cylindrical surfaces. The Reynolds stress on 
the cylindrical surface r = constant has two components, - p s  perpendicular 
to the helices of constant flow, and -p= tangential to these helices, where 
ul, u2, u3 are the components of u defined in (4.14). 

By (4.15) and (4.16), 
UU - -{G(rG)’ i *  - G(rG)’) elsr@, 

- 4kr 

(5.91 
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by (5.2). We have previously shown that W -+ 0 as ci J. 0 if the wave speed is 
chosen so that c, = 4; thus the component of the Reynolds stress perpendicular 
to the helices of constant phase vanishes as the rate of amplification vanishes. 
Also, if c, = U,, this component of the Reynolds stress will vanish everywhere, 
except possibly near r = 0. 

For the component of the Reynolds stress parallel to the local helix of constant 
phase, we have, by (4.15), (4.16) and (4.17), 

- - 1G12e2.cit 
2a{( u - cry+ c;} rk ' (5.10) 

Thus, in the limit of zero amplification rate U Z  vanishes except for a peak near 
r = r,. This peak can be important because any integral of this Reynolds stress 
over a region containing the critical point r = rc will remain finite as ci $ 0. For 
instance, the rate a t  which the Reynolds stresses do work over the whole fluid 
(per unit axial length of the jet) is 

- l ipIOw U'uG,rdr  = -n-p 

as c i $ 0  (5.12) 
a 

by (5.11). This rate of doing work is presumably equal to the rate of gain of 
disturbance energy, but it will be noticed that it does not vanish as the ampli- 
fication rate vanishes ! This unexpected result associated with the tangential 
Reynolds stress presumably implies that viscous dissipation in the neighbourhood 
of the critical point absorbs the excess production of energy however small v 
may be. 

A singularity in the tangential component of disturbance velocity 

Looking back at  the derivation of (5.10) and (5.11) we see that this peak in the 
Reynolds stress is associated with a singularity in the component of disturbance 
velocity tangential to the helices of constant phase. By (4.15), (4.16) and (4.17), 

(5.13) 

showing that this tangential component becomes infinite at the critical point 
r = r, where U = c. This singularity also appears in the case of unidirectional 
flows in two dimensions (Benney 1961, pp. 221 et q.), where the corresponding 
equation (in the usual notation) for the component of disturbance velocity parallel 
to the line of constant phase of a three-dimensional disturbance is 
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which may be recovered from (5.13) under the limiting process r = rl + y, y = n/rl, 
r1 -+ co. Physically (4.17) shows that the momentum per unit volume of the 
basic flow has a component p(n/rk)U tangential to the wave helix which is 
convected radially by the disturbance component u2. This gives rise to a tan- 
gential component of disturbance momentum, which is carried away by the 
mainstream except a t  the point where U = c. 

Hence if an initial value problem were under consideration, the amplitude of 
a disturbance would grow with time near the critical point. For a real fluid, 
viscosity would become more important as the velocity gradient became larger, 
and eventually an equilibrium would be reached, with viscous diffusion just 
balancing the influx of momentum by convection. Thus for a real fluid the 
singularity at  the critical point would be replaced by a narrow ' critical layer ' 
in which viscosity is important. To find the behaviour of the tangential velocity 
component in the critical layer, the viscous terms in the equation (2.4) to (3.6) 
would have to be taken into consideration.<As in the two-dimensional case, the 
critical layer has thickness (via)$ and an appropriate new space variable is 
s = (r-rc)(v/a)-4.  By (4.17) 

as the critical layer is approached, so a3 should also be scaled as 

a3 = @/a)-* w(s). 

The details of the behaviour of w as a function of s in the critical layer are the 
same as for the two-dimensional case. The equation satisfied by w(s)  can be 
obtained by making the relevant approximations to (2.4) and (2.6) and then 
subtracting n/r times (2.4) from a times (2.6). In  terms of w and s it  is 

and the solution can be expressed in terms of a Lommel function. (Compare 
w(s)  with the function 6 in the paper by Benney 1961, p. 223.) 

If some disturbances are amplified exponentially according to the inviscid 
theory, the effect of the singularity in the velocity component parallel to the 
local wave helix will not be important, but in other cases, such as for the 
boundary layer formed on a cylinder moving parallel to its generators, this 
singularity can be expected to play an important role when non-linear inter- 
actions are considered. 

A necessary condition for the existence of a neutral 
disturbance with cr = U, (n $. 0) 

Unfortunately the type of argument used to show the existence of neutral dis- 
turbances for unidirectional flows in two dimensions is more successful here in 
showing when solutions do not exist rather than when they do. In  fact it can be 
shown that neutral disturbances with c = U, do not exist when n is too large. 

35-2 
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If p = a/n, (2.16) may be written as 

where N 2  is the positive valued function 

(5.14) 

(5.15) 

When n < N ,  the solutions of (5.14) are oscillatory in character, whereas when 
n > N they are monotonic. If n is greater than the largest value of N ,  the solution 
will be everywhere monotonic, and the boundary conditions (rG = 0 both at 
r = 0 and at r = 00) cannot be satisfied. Thus a necessary condition for the 

(5.16) existence of a solution is 
n2 < max N2(r,  p). 

This condition is quite restrictive. For the jet profile (1.5) it is shown in the 
next section that no solution exists for n 2 2,  thus leaving n = 1 as the only 
possibility for a non-singular solution. 

r,  B 

6. Demonstration that there is one, and only one, neutral disturbance 
with a =k 0 for the jet profile (1.5) 

In  the case of an experimental jet produced by discharge of fluid from an 
orifice (see 5 l), the velocity in the laminar jet is given by (1.5), except near the 
orifice, if the Reynolds number R is large. If the condition (1.11) is satisfied, 
ro and U, can be treated as constants, so let us choose our length and time scales 
in such a way that both ro and U, are unity. Then (1.5) becomes 

U = (1 + r2)-2. (6.1) 

For amplified disturbances to exist, Q' must change sign in the fluid. For the 
profile (6.1) we have for & (see the definition (4.3)) 

and Q' = 0 at the critical point r = rc given by 

for n =t= 0. It is convenient to write (ar,/n)2 = q, and a/n = /3 as before, in which 
case (6.2) can be written as 

For n = 0, &' does not change sign in the fluid, and there are no amplified 
solutions. 

We shall use the governing equation in the form (5.14). The quantity N 2  is 
found from (5.15), (6.1) and (6.3) to be 

(6.3) 3q2 + 2q = 1 2 .  

72r2( 1 + 3qr2) ( 1  + q)2 
(1 + r2)2 (1 + (2 + 3q) qr2)2 ((5 + 6q) + (2 + 3q)r2)' 

N2 = (6.4) 
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A graph of the function N2 as a function of r2 for various values of q is reproduced 
in figure 3. The maximum value of N 2  occurs for a very small value of q and is 
approximately 2.73. The necessary condition (5.16) for the existence of a neutral 
solution with c = U, shows that in this case neutral solutions do not exist for 
n 3 1.  It is commonly found that two-dimensional flows are stable at  large 
values of the wave-number magnitude; and presumably the total wave-number 
is so large here when n > 1 that disturbances are stable. 

1 I I I I I I I I I I 
0 2  0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

re 
FIGURE 3. N Z  as a function of T~ for various values of q. 

For n = 1, it  remains to show that there exists a neutral solution of finite wave 
number ao. This can be accomplished by considering the solutions of (5.14) which 
satisfy the boundary conditionrG = 0 a t  r = 0 for extreme values of a (i.e. extreme 
values of q )  and assuming that the solutions vary continuously for intermediate 
values. First, for qlarge, (6.4) shows that N 2  -+ 0 so that (5.14) becomes approxi- 
mately 

of which the solution (for rG) which vanishes a t  r = 0 is 

which is everywhere positive. On the other hand, for q + 0, (5.14) can be approxi- 

= rG, r -  _ _ _ _ ~  
dr 1 l + a 2 r 2  dr 

rG = rIi(cw), (6.5) 

mated by d d(rG) 72r2 
d r {  dr ) = ( ( l+r2)2(5+2r2)  

r -  r- I - - -  

except for r very large (ar = O(l)),  where the solution of this equation must be 
matched to a Bessel function. Equation (6.6) has a solution which is an algebraic 
function, viz. 

(This solution was first obtained by removing the singularity at r2 = - 1 from 
the equation, and then expanding (1  + r2)2 G as a power series.) The important 

(5 + 2r2) (5 - r2)  G = _ ~ _ _ ~  
( 1 + r 2 ) 2  * 
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feature of this solution is that G changes sign, whereas when q is large G does not 
change sign but goes rapidly to 03. Presumably for some finite value of q, qo say, 
CT just fails to change sign, and satisfies the boundary conditions at both r = 0 
and r = 03. 

The Cambridge computer EDSAC was used to find qo. The programme was 
designed to integrate a modified form of (5.14) by the Runge-Kutta-Gill pro- 
cedure, starting a t  03. In  this way the behaviour near r = 0 of solutions of (5.14) 
satisfying the boundary condition at r = 00 was obtained for various values of q,  
and an interpolation procedure was used to find the value qo for which the boun- 
dary condition at r = 0 was also satisfied. The value obtained was qo = 0.57, 
corresponding to a wave-number a, = 1.46. 

7. Conclusion 
So far as inviscid disturbances are concerned, the jet profile (1.5) (and, i t  may 

be supposed, other profiles roughly like it) is unstable only when n = 1 (corre- 
sponding to a ‘sinuous’ type of disturbance) and the axial wavelength is larger 
than some critical value several times the jet diameter. The next step in the whole 
theoretical problem is to examine the effect of viscosity and to determine the 
critical Reynolds number of the jet. Viscosity appears to have a purely stabilizing 
effect in cases of two-dimensional unidirectional primary flows in the absence 
of rigid boundaries, and it would be reasonable to base further analysis of jet 
stability on the assumption that the same is true of axisymmetric primary flows. 
Thus analysis of the stability of a jet with a profile like (1.5) at finite Reynolds 
number can assume at the beginning that n = 1, if that helps. The observations 
of a jet reported by Reynolds (1962) do suggest that under certain conditions 
a sinuous type of disturbance of large wavelength is amplified.? 

It is very important to know if the critical Reynolds number is large. If it  is, 
a neutral disturbance exists only under conditions such that (a)  the approxi- 
mation of unidirectionality of the primary flow streamlines is accurate, and 
( b )  the conventional approximations of stability theory associated with high 
Reynolds numbers may be made; if it  is not, jets are stable only when the stream- 
lines of the primary flow are inclined to each a t  appreciable angles and new 
methods of analysing the stability will be needed. Again the observational 
evidence is helpful; Reynolds (1962) observed, as also did Schade, that a jet 
from a small orifice can be steady over an axial distance large compared with the 
average jet diameter a t  Reynolds numbers larger than 100. It would therefore 
be sensible to assume, in a preliminary theoretical determination of the critical 
Reynolds number of a jet with a profile like (1.5), that the Reynolds number 
is large a t  all points on the curve of neutral stability in the (&a)-plane; the 
validity of the assumption would of course be revealed by the outcome of the 
analysis. 

t The correspondence between observations of growing disturbances and the theory of 
small disturbances to unidirectional flow is complicated by the fact that the diameter 
of a real jet increases with distance downstream, thereby changing the effective non- 
dimensional wave-number of a disturbance of given absolute frequency, and is beset by 
difficulties not discussed here. 
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